Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Sci Rep ; 14(1): 8822, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627570

RESUMO

HIV exposed-uninfected (HEU) infants and children are at risk of developmental delays as compared to HIV uninfected unexposed (HUU) populations. The effects of exposure to in utero HIV and ART regimens on the HEU the developing brain are not well understood. In a cohort of 2-week-old newborns, we used diffusion tensor imaging (DTI) tractography and graph theory to examine the influence of HIV and ART exposure in utero on neonate white matter integrity and organisation. The cohort included HEU infants born to mothers who started ART before conception (HEUpre) and after conception (HEUpost), as well as HUU infants from the same community. We investigated HIV exposure and ART duration group differences in DTI metrics (fractional anisotropy (FA) and mean diffusivity (MD)) and graph measures across white matter. We found increased MD in white matter connections involving the thalamus and limbic system in the HEUpre group compared to HUU. We further identified reduced nodal efficiency in the basal ganglia. Within the HEUpost group, we observed reduced FA in cortical-subcortical and cerebellar connections as well as decreased transitivity in the hindbrain area compared to HUU. Overall, our analysis demonstrated distinct alterations in white matter integrity related to the timing of maternal ART initiation that influence regional brain network properties.


Assuntos
Infecções por HIV , Substância Branca , Lactente , Criança , Feminino , Humanos , Recém-Nascido , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão , Infecções por HIV/tratamento farmacológico , Encéfalo/diagnóstico por imagem , Mães
2.
Front Neuroimaging ; 3: 1341607, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510428

RESUMO

Introduction: School-aged children experience crucial developmental changes in white matter (WM) in adolescence. The human immunodeficiency virus (HIV) affects neurodevelopment. Children living with perinatally acquired HIV (CPHIVs) demonstrate hearing and neurocognitive impairments when compared to their uninfected peers (CHUUs), but investigations into the central auditory system (CAS) WM integrity are lacking. The integration of the CAS and other brain areas is facilitated by WM fibers whose integrity may be affected in the presence of HIV, contributing to neurocognitive impairments. Methods: We used diffusion tensor imaging (DTI) tractography to map the microstructural integrity of WM between CAS regions, including the lateral lemniscus and acoustic radiation, as well as between CAS regions and non-auditory regions of 11-year-old CPHIVs. We further employed a DTI-based graph theoretical framework to investigate the nodal strength and efficiency of the CAS and other brain regions in the structural brain network of the same population. Finally, we investigated associations between WM microstructural integrity outcomes and neurocognitive outcomes related to auditory and language processing. We hypothesized that compared to the CHUU group, the CPHIV group would have lower microstructural in the CAS and related regions. Results: Our analyses showed higher mean diffusivity (MD), a marker of axonal maturation, in the lateral lemniscus and acoustic radiations, as well as WM between the CAS and non-auditory regions predominantly in frontotemporal areas. Most affected WM connections also showed higher axial and radial diffusivity (AD and RD, respectively). There were no differences in the nodal properties of the CAS regions between groups. The MD of frontotemporal and subcortical WM-connected CAS regions, including the inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, and internal capsule showed negative associations with sequential processing in the CPHIV group but not in the CHUU group. Discussion: The current results point to reduced axonal maturation in WM, marked by higher MD, AD, and RD, within and from the CAS. Furthermore, alterations in WM integrity were associated with sequential processing, a neurocognitive marker of auditory working memory. Our results provide insights into the microstructural integrity of the CAS and related WM in the presence of HIV and link these alterations to auditory working memory.

3.
PLoS One ; 19(2): e0298787, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38386679

RESUMO

People living with HIV are at three times greater risk for depressive symptoms. Inflammation is a notable predictor of depression, and people with HIV exhibit chronic inflammation despite antiretroviral therapy. We hypothesised that inflammatory biomarkers may mediate the association between HIV status and depressive symptoms. Participants (N = 60, 53% girls, median [interquartile range (IQR)] age 15.5 [15.0, 16.0] years, 70% living with HIV, of whom 90.5% were virally-suppressed) completed the nine-item Patient Health Questionnaire (PHQ-9). We measured choline and myo-inositol in basal ganglia, midfrontal gray matter, and peritrigonal white matter using magnetic resonance spectroscopy, and 16 inflammatory proteins in blood serum using ELISA and Luminex™ multiplex immunoassays. Using structural equation mediation modelling, we calculated standardised indirect effect estimates with 95% confidence intervals. Median [IQR] total PHQ-9 score was 3 [0, 7]. HIV status was significantly associated with total PHQ-9 score (B = 3.32, p = 0.022). Participants with HIV showed a higher choline-to-creatine ratio in the basal ganglia than those without HIV (ß = 0.86, pFDR = 0.035). In blood serum, participants with HIV showed higher monocyte chemoattractant protein-1 (MCP-1, ß = 0.59, pFDR = 0.040), higher chitinase-3 like-1 (YKL-40, ß = 0.73, pFDR = 0.032), and lower interleukin-1beta (IL-1ß, ß = -0.67, pFDR = 0.047) than those without HIV. There were no significant associations of any biomarkers with total PHQ-9 score. None of the indirect effects were significant, mediating <13.1% of the association. Findings remained consistent when accounting for age, gender, and time between neuroimaging and PHQ-9 administration. Using a robust analytical approach in a community-based sample, we have shown that participants living with HIV reported greater depressive symptoms than those without HIV, but we did not find that neuroimaging and blood biomarkers of inflammation significantly mediated this association. Further studies with participants experiencing severe depression may help to elucidate the links between HIV, inflammation, and depression.


Assuntos
Depressão , Inflamação , Feminino , Humanos , Adolescente , Masculino , Depressão/complicações , Inflamação/complicações , Gânglios da Base , Colina , Interleucina-1beta , Biomarcadores
4.
bioRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260347

RESUMO

HIV exposed-uninfected (HEU) infants and children are at risk of developmental delays as compared to uninfected unexposed (HUU) populations. The effects of exposure to in utero HIV and ART regimens on the HEU the developing brain are not well understood. In a cohort of 2-week-old newborns, we used diffusion tensor imaging (DTI) tractography and graph theory to examine the influence of HIV and ART exposure in utero on neonate white matter integrity and organisation. The cohort included HEU infants born to mothers who started ART before conception (HEUpre) and after conception (HEUpost), as well as HUU infants from the same community. We investigated HIV exposure and ART duration group differences in DTI metrics (fractional anisotropy (FA) and mean diffusivity (MD)) and graph measures across white matter. We found increased MD in white matter connections involving the thalamus and limbic system in the HEUpre group compared to HUU. We further identified reduced nodal efficiency in the basal ganglia. Within the HEUpost group, we observed reduced FA in cortical-subcortical and cerebellar connections as well as decreased transitivity in the hindbrain area compared to HUU. Overall, our analysis demonstrated distinct alterations in white matter integrity related to the timing of maternal ART initiation that influence regional brain network properties.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37621555

RESUMO

In the course of diffusion, water molecules experience varying values for the relaxation-time property of the underlying tissue, a factor that has not been accounted for in diffusion MRI (dMRI) modeling. Accordingly, we derive a relationship between the diffusion profile measured by dMRI and the spatial gradient of the image, and subsequently estimate the latter from the former. We test our hypothesized relationship via dMRI of the human brain (a public in vivo image and an acquired ex vivo stimulated-echo image), showing statistically significant results that may be due to our model and/or the confounding factor of "fiber continuity".

6.
Front Neurosci ; 17: 1085589, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968507

RESUMO

Introduction: Successful programmes for prevention of vertical HIV transmission have reduced the risk of infant HIV infection in South Africa from 8% in 2008 to below 1% in 2018/2019, resulting in an increasing population of children exposed to HIV perinatally but who are uninfected (HEU). However, the long-term effects of HIV and antiretroviral treatment (ART) exposure on the developing brain are not well understood. Whereas children who are HEU perform better than their HIV-infected counterparts, they demonstrate greater neurodevelopmental delay than children who are HIV unexposed and uninfected (HUU), especially in resource-poor settings. Here we investigate subcortical volumetric differences related to HIV and ART exposure in neonates. Methods: We included 120 infants (59 girls; 79 HEU) born to healthy women with and without HIV infection in Cape Town, South Africa, where HIV sero-prevalence approaches 30%. Of the 79 HEU infants, 40 were exposed to ART throughout gestation (i.e., mothers initiated ART pre conception; HEU-pre), and 39 were exposed to ART for part of gestation (i.e., mothers initiated ART post conception; HEU-post). Post-conception mothers had a mean (± SD) gestational age (GA) of 15.4 (± 5.7) weeks at ART initiation. Mothers with HIV received standard care fixed drug combination ART (Tenofovir/Efavirenz/Emtricitabine). Infants were imaged unsedated on a 3T Skyra (Siemens, Erlangen, Germany) at mean GA equivalent of 41.5 (± 1.0) weeks. Selected regions (caudate, putamen, pallidum, thalamus, cerebellar hemispheres and vermis, and corpus callosum) were manually traced on T1-weighted images using Freeview. Results: HEU neonates had smaller left putamen volumes than HUU [ß (SE) = -90.3 (45.3), p = 0.05] and caudate volume reductions that depended on ART exposure duration in utero. While the HEU-pre group demonstrated no caudate volume reductions compared to HUU, the HEU-post group had smaller caudate volumes bilaterally [ß (SE) = -145.5 (45.1), p = 0.002, and -135.7 (49.7), p = 0.008 for left and right caudate, respectively]. Discussion: These findings from the first postnatal month suggest that maternal ART throughout gestation is protective to the caudate nuclei. In contrast, left putamens were smaller across all HEU newborns, despite maternal ART.

7.
J Neuroimaging ; 32(5): 866-874, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35983725

RESUMO

BACKGROUND AND PURPOSE: Alexander disease (AxD) is a neurodegenerative disorder caused by heterozygous Glial Fibrillary Acidic Protein mutation. The characteristic structural findings of AxD, such as leukodystrophic features, are well known, while association fibers of AxD remain uninvestigated. The aim of this study was to explore global and subcortical fibers in four brains with AxD using ex vivo diffusion tractography METHODS: High-angular-resolution diffusion magnetic resonance imaging (HARDI) tractography and diffusion-tensor imaging (DTI) tractography were used to evaluate long and short association fibers and compared to histological findings in brain specimens obtained from four donors with AxD and two donors without neurological disorders RESULTS: AxD brains showed impairment of long association fibers, except for the arcuate fasciculus and cingulum bundle, and abnormal trajectories of the inferior longitudinal and fronto-occipital fasciculi on HARDI tractography and loss of multidirectionality in subcortical fibers on DTI tractography. In histological studies, AxD brains showed diffuse low density on Klüver-Barrera and neurofilament staining and sporadic Rosenthal fibers on hematoxylin and eosin staining CONCLUSIONS: This study describes the spatial distribution of degenerations of short and long association fibers in AxD brains using combined tractography and pathological findings.


Assuntos
Doença de Alexander , Substância Branca , Doença de Alexander/diagnóstico por imagem , Doença de Alexander/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Humanos
8.
Brain Commun ; 4(3): fcac074, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620167

RESUMO

Neuroimaging studies have routinely used hippocampal volume as a measure of Alzheimer's disease severity, but hippocampal changes occur too late in the disease process for potential therapies to be effective. The entorhinal cortex is one of the first cortical areas affected by Alzheimer's disease; its neurons are especially vulnerable to neurofibrillary tangles. Entorhinal atrophy also relates to the conversion from non-clinical to clinical Alzheimer's disease. In neuroimaging, the human entorhinal cortex has so far mostly been considered in its entirety or divided into a medial and a lateral region. Cytoarchitectonic differences provide the opportunity for subfield parcellation. We investigated the entorhinal cortex on a subfield-specific level-at a critical time point of Alzheimer's disease progression. While MRI allows multidimensional quantitative measurements, only histology provides enough accuracy to determine subfield boundaries-the pre-requisite for quantitative measurements within the entorhinal cortex. This study used histological data to validate ultra-high-resolution 7 Tesla ex vivo MRI and create entorhinal subfield parcellations in a total of 10 pre-clinical Alzheimer's disease and normal control cases. Using ex vivo MRI, eight entorhinal subfields (olfactory, rostral, medial intermediate, intermediate, lateral rostral, lateral caudal, caudal, and caudal limiting) were characterized for cortical thickness, volume, and pial surface area. Our data indicated no influence of sex, or Braak and Braak staging on volume, cortical thickness, or pial surface area. The volume and pial surface area for mean whole entorhinal cortex were 1131 ± 55.72 mm3 and 429 ± 22.6 mm2 (mean ± SEM), respectively. The subfield volume percentages relative to the entire entorhinal cortex were olfactory: 18.73 ± 1.82%, rostral: 14.06 ± 0.63%, lateral rostral: 14.81 ± 1.22%, medial intermediate: 6.72 ± 0.72%, intermediate: 23.36 ± 1.85%, lateral caudal: 5.42 ± 0.33%, caudal: 10.99 ± 1.02%, and caudal limiting: 5.91 ± 0.40% (all mean ± SEM). Olfactory and intermediate subfield revealed the most extensive intra-individual variability (cross-subject variance) in volume and pial surface area. This study provides validated measures. It maps individuality and demonstrates human variability in the entorhinal cortex, providing a baseline for approaches in individualized medicine. Taken together, this study serves as a ground-truth validation study for future in vivo comparisons and treatments.

9.
J Alzheimers Dis ; 87(3): 1379-1399, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35491780

RESUMO

BACKGROUND: Neurofibrillary tangle (NFT) accumulation in the entorhinal cortex (EC) precedes the transformation from cognitive controls to mild cognitive impairment and Alzheimer's disease (AD). While tauopathy has been described in the EC before, the order and degree to which the individual subfields within the EC are engulfed by NFTs in aging and the preclinical AD stage is unknown. OBJECTIVE: We aimed to investigate substructures within the EC to map the populations of cortical neurons most vulnerable to tau pathology in aging and the preclinical AD stage. METHODS: We characterized phosphorylated tau (CP13) in 10 cases at eight well-defined anterior-posterior levels and assessed NFT density within the eight entorhinal subfields (described by Insausti and colleagues) at the preclinical stages of AD. We validated with immunohistochemistry and labeled the NFT density ratings on ex vivo MRIs. We measured subfield cortical thickness and reconstructed the labels as three-dimensional isosurfaces, resulting in anatomically comprehensive, histopathologically validated tau "heat maps." RESULTS: We found the lateral EC subfields ELc, ECL, and ECs (lateral portion) to have the highest tau density in semi-quantitative scores and quantitative measurements. We observed significant stepwise higher tau from anterior to posterior levels (p < 0.001). We report an age-dependent anatomically-specific vulnerability, with all cases showing posterior tau pathology, yet older individuals displaying an additional anterior tau burden. Finally, cortical thickness of each subfield negatively correlated with respective tau scores (p < 0.05). CONCLUSION: Our findings indicate that posterior-lateral subfields within the EC are the most vulnerable to early NFTs and atrophy in aging and preclinical AD.


Assuntos
Doença de Alzheimer , Tauopatias , Envelhecimento , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Córtex Entorrinal/patologia , Humanos , Emaranhados Neurofibrilares/patologia , Tauopatias/diagnóstico por imagem , Tauopatias/patologia , Proteínas tau/metabolismo
10.
Hum Brain Mapp ; 43(13): 4128-4144, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35575438

RESUMO

Children with perinatally acquired HIV (CPHIV) have poor cognitive outcomes despite early combination antiretroviral therapy (cART). While CPHIV-related brain alterations can be investigated separately using proton magnetic resonance spectroscopy (1 H-MRS), structural magnetic resonance imaging (sMRI), diffusion tensor imaging (DTI), and functional MRI (fMRI), a set of multimodal MRI measures characteristic of children on cART has not been previously identified. We used the embedded feature selection of a logistic elastic-net (EN) regularization to select neuroimaging measures that distinguish CPHIV from controls and measured their classification performance via the area under the receiver operating characteristic curve (AUC) using repeated cross validation. We also wished to establish whether combining MRI modalities improved the models. In single modality analysis, sMRI volumes performed best followed by DTI, whereas individual EN models on spectroscopic, gyrification, and cortical thickness measures showed no class discrimination capability. Adding DTI and 1 H-MRS in basal measures to sMRI volumes produced the highest classification performance validation accuracy = 85 % AUC = 0.80 . The best multimodal MRI set consisted of 22 DTI and sMRI volume features, which included reduced volumes of the bilateral globus pallidus and amygdala, as well as increased mean diffusivity (MD) and radial diffusivity (RD) in the right corticospinal tract in cART-treated CPHIV. Consistent with previous studies of CPHIV, select subcortical volumes obtained from sMRI provide reasonable discrimination between CPHIV and controls. This may give insight into neuroimaging measures that are relevant in understanding the effects of HIV on the brain, thereby providing a starting point for evaluating their link with cognitive performance in CPHIV.


Assuntos
Imagem de Tensor de Difusão , Infecções por HIV , Encéfalo , Criança , Imagem de Tensor de Difusão/métodos , Infecções por HIV/diagnóstico por imagem , Infecções por HIV/tratamento farmacológico , Infecções por HIV/patologia , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Neuroimagem
11.
Magn Reson Med ; 88(1): 211-223, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35344618

RESUMO

PURPOSE: Although 3D EPI is more susceptible to motion artifacts than 2D EPI, it presents some benefits for functional MRI, including the absence of spin-history artifacts, greater potential for parallel imaging acceleration, and better functional sensitivity in high-resolution imaging. Here we present a self-navigated 3D-EPI sequence suitable for prospective motion-corrected functional MRI without additional hardware or pulses. METHODS: For each volume acquisition, the first 24 of the 52 partitions being acquired are accumulated to a new feedback block that was added to the image reconstruction pipeline. After zero-filling the remaining partitions, the feedback block constructs a volumetric self-navigator (vSNav), co-registers it to the reference vSNav acquired during the first volume acquisition, and sends motion estimates to the sequence. The sequence then updates its FOV and acquires subsequent partitions with the adjusted FOV, until the next update is received. The sequence was validated without and with intentional motion in phantom and in vivo on a 3T Skyra. RESULTS: For phantom scans, the FOV was updated 0.704 s after acquisition of the vSNav partitions, and for in vivo scans after 0.768 s. Both phantom and in vivo data demonstrated stable motion estimates in the absence of motion. For in vivo acquisitions, prospective head-pose estimates using the vSNav's and retrospective estimates with FLIRT (FMRIB's Linear Image Registration Tool) agreed to within 0.23 mm (< 10% of the slice thickness) and 0.14° in all directions. CONCLUSION: Depending when motion occurs during a volume acquisition, the proposed method fully corrects the FOV and recovers image quality within one volume acquisition.


Assuntos
Artefatos , Encéfalo , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Estudos Prospectivos , Estudos Retrospectivos
12.
J Neurosci ; 42(18): 3749-3767, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35332086

RESUMO

The neural circuits that support human cognition are a topic of enduring interest. Yet, there are limited tools available to map brain circuits in the human and nonhuman primate brain. We harnessed high-resolution diffusion MR tractography, anatomic, and transcriptomic data from individuals of either sex to investigate the evolution and development of frontal cortex circuitry. We applied machine learning to RNA sequencing data to find corresponding ages between humans and macaques and to compare the development of circuits across species. We transcriptionally defined neural circuits by testing for associations between gene expression and white matter maturation. We then considered transcriptional and structural growth to test whether frontal cortex circuit maturation is unusually extended in humans relative to other species. We also considered gene expression and high-resolution diffusion MR tractography of adult brains to test for cross-species variation in frontal cortex circuits. We found that frontal cortex circuitry development is extended in primates, and concomitant with an expansion in corticocortical pathways compared with mice in adulthood. Importantly, we found that these parameters varied relatively little across humans and studied primates. These data identify a surprising collection of conserved features in frontal cortex circuits across humans and Old World monkeys. Our work demonstrates that integrating transcriptional and structural data across temporal dimensions is a robust approach to trace the evolution of brain pathways in primates.SIGNIFICANCE STATEMENT Diffusion MR tractography is an exciting method to explore pathways, but there are uncertainties in the accuracy of reconstructed tracts. We broaden the repertoire of toolkits to enhance our ability to trace human brain pathways from diffusion MR tractography. Our integrative approach finds corresponding ages across species and transcriptionally defines neural circuits. We used this information to test for variation in circuit maturation across species and found a surprising constellation of similar features in frontal cortex neural circuits across humans and primates. Integrating across scales of biological organization expands the repertoire of tools available to study pathways in primates, which opens new avenues to study pathways in health and diseases of the human brain.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Adulto , Animais , Mapeamento Encefálico/métodos , Imagem de Tensor de Difusão/métodos , Humanos , Camundongos , Vias Neurais , Primatas , Substância Branca/diagnóstico por imagem
13.
Brain Connect ; 12(4): 302-319, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34107770

RESUMO

Introduction: Even with the increased access and early initiation of combination antiretroviral therapy, children with perinatally acquired human immunodeficiency virus (CPHIV) continue to demonstrate white matter alterations. Children perinatally HIV-exposed, but uninfected (CHEU) alike show differences in white matter integrity compared with children who are HIV-unexposed and uninfected (CHUU). Objectives: Mapping white matter connections that link gray matter regions that form resting-state (RS) functional networks may demonstrate whether structural and functional connectivity alterations in HIV infection and exposure may be related. We hypothesized reduced structural connectivity in CPHIV within the default mode network (DMN), visual, ventral DMN (vDMN), somatosensory, salience, auditory, motor, executive, basal ganglia, and posterior DMN (pDMN). We also hypothesized that CHEU will have increased structural connectivity compared with CHUU in the vDMN, somatosensory, pDMN, dorsal attention, salience, auditory, motor and basal ganglia. Methods: Study participants were 61 seven-year-old CPHIV and 46 age-matched children who are HIV uninfected (CHU) (19 CHEU). We used diffusion tensor imaging-based tractography to investigate white matter connections that link gray matter regions within RS functional networks. Results: We found altered white matter integrity in the somatosensory, salience, default mode, and motor networks of CPHIV compared with CHU. The superior temporal cortex, superior frontal cortex, and putamen were affected in all four networks and have also been reported to demonstrate morphological alterations in the same cohort. In CHEU, white matter integrity was higher in the visual network, pDMN, and motor network compared with CHUU. Conclusion: Our results suggest that altered white matter integrity may influence gray matter morphology and functional network alterations. Impact statement The long-term effects of human immunodeficiency virus (HIV) and exposure on the developing brain in the combination antiretroviral therapy era are still not well known. We use diffusion tensor imaging-based tractography to explore these effects on white matter connections that link gray matter regions within functional networks. Our findings provide a context for HIV-associated white matter and connectivity abnormalities.


Assuntos
Infecções por HIV , Substância Branca , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Criança , Imagem de Tensor de Difusão , HIV , Infecções por HIV/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem
14.
Acta Neuropathol ; 143(3): 331-348, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34928427

RESUMO

Perivascular spaces (PVS) are compartments surrounding cerebral blood vessels that become visible on MRI when enlarged. Enlarged PVS (EPVS) are commonly seen in patients with cerebral small vessel disease (CSVD) and have been suggested to reflect dysfunctional perivascular clearance of soluble waste products from the brain. In this study, we investigated histopathological correlates of EPVS and how they relate to vascular amyloid-ß (Aß) in cerebral amyloid angiopathy (CAA), a form of CSVD that commonly co-exists with Alzheimer's disease (AD) pathology. We used ex vivo MRI, semi-automatic segmentation and validated deep-learning-based models to quantify EPVS and associated histopathological abnormalities. Severity of MRI-visible PVS during life was significantly associated with severity of MRI-visible PVS on ex vivo MRI in formalin fixed intact hemispheres and corresponded with PVS enlargement on histopathology in the same areas. EPVS were located mainly around the white matter portion of perforating cortical arterioles and their burden was associated with CAA severity in the overlying cortex. Furthermore, we observed markedly reduced smooth muscle cells and increased vascular Aß accumulation, extending into the WM, in individually affected vessels with an EPVS. Overall, these findings are consistent with the notion that EPVS reflect impaired outward flow along arterioles and have implications for our understanding of perivascular clearance mechanisms, which play an important role in the pathophysiology of CAA and AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Angiopatia Amiloide Cerebral , Sistema Glinfático , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/metabolismo , Angiopatia Amiloide Cerebral/diagnóstico por imagem , Angiopatia Amiloide Cerebral/patologia , Dilatação , Sistema Glinfático/metabolismo , Humanos , Imageamento por Ressonância Magnética
15.
Front Neurosci ; 16: 1023665, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36817099

RESUMO

Introduction: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction, communication and repetitive, restrictive behaviors, features supported by cortical activity. Given the importance of the subventricular zone (SVZ) of the lateral ventrical to cortical development, we compared molecular, cellular, and structural differences in the SVZ and linked cortical regions in specimens of ASD cases and sex and age-matched unaffected brain. Methods: We used magnetic resonance imaging (MRI) and diffusion tractography on ex vivo postmortem brain samples, which we further analyzed by Whole Genome Bisulfite Sequencing (WGBS), Flow Cytometry, and RT qPCR. Results: Through MRI, we observed decreased tractography pathways from the dorsal SVZ, increased pathways from the posterior ventral SVZ to the insular cortex, and variable cortical thickness within the insular cortex in ASD diagnosed case relative to unaffected controls. Long-range tractography pathways from and to the insula were also reduced in the ASD case. FACS-based cell sorting revealed an increased population of proliferating cells in the SVZ of ASD case relative to the unaffected control. Targeted qPCR assays of SVZ tissue demonstrated significantly reduced expression levels of genes involved in differentiation and migration of neurons in ASD relative to the control counterpart. Finally, using genome-wide DNA methylation analyses, we identified 19 genes relevant to neurological development, function, and disease, 7 of which have not previously been described in ASD, that were significantly differentially methylated in autistic SVZ and insula specimens. Conclusion: These findings suggest a hypothesis that epigenetic changes during neurodevelopment alter the trajectory of proliferation, migration, and differentiation in the SVZ, impacting cortical structure and function and resulting in ASD phenotypes.

16.
Int J Imaging Syst Technol ; 31(3): 1136-1154, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34421216

RESUMO

In fetal-brain MRI, head-pose changes between prescription and acquisition present a challenge to obtaining the standard sagittal, coronal and axial views essential to clinical assessment. As motion limits acquisitions to thick slices that preclude retrospective resampling, technologists repeat ~55-second stack-of-slices scans (HASTE) with incrementally reoriented field of view numerous times, deducing the head pose from previous stacks. To address this inefficient workflow, we propose a robust head-pose detection algorithm using full-uterus scout scans (EPI) which take ~5 seconds to acquire. Our ~2-second procedure automatically locates the fetal brain and eyes, which we derive from maximally stable extremal regions (MSERs). The success rate of the method exceeds 94% in the third trimester, outperforming a trained technologist by up to 20%. The pipeline may be used to automatically orient the anatomical sequence, removing the need to estimate the head pose from 2D views and reducing delays during which motion can occur.

17.
Alcohol Clin Exp Res ; 45(9): 1762-1774, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34342017

RESUMO

BACKGROUND: Prenatal alcohol exposure (PAE) is associated with smaller regional and global brain volumes. In rats, gestational choline supplementation mitigates adverse developmental effects of ethanol exposure. Our recent randomized, double-blind, placebo-controlled maternal choline supplementation trial showed improved somatic and functional outcomes in infants at 6.5 and 12 months postpartum. Here, we examined whether maternal choline supplementation protected the newborn brain from PAE-related volume reductions and, if so, whether these volume changes were associated with improved infant recognition memory. METHODS: Fifty-two infants born to heavy-drinking women who had participated in a choline supplementation trial during pregnancy underwent structural magnetic resonance imaging with a multi-echo FLASH protocol on a 3T Siemens Allegra MRI (median age = 2.8 weeks postpartum). Subcortical regions were manually segmented. Recognition memory was assessed at 12 months on the Fagan Test of Infant Intelligence (FTII). We examined the effects of choline on regional brain volumes, whether choline-related volume increases were associated with higher FTII scores, and the degree to which the regional volume increases mediated the effects of choline on the FTII. RESULTS: Usable MRI data were acquired in 50 infants (choline: n = 27; placebo: n = 23). Normalized volumes were larger in six of 12 regions in the choline than placebo arm (t ≥ 2.05, p ≤ 0.05) and were correlated with the degree of maternal choline adherence (ß ≥ 0.28, p ≤ 0.04). Larger right putamen and corpus callosum were related to higher FTII scores (r = 0.36, p = 0.02) with a trend toward partial mediation of the choline effect on recognition memory. CONCLUSIONS: High-dose choline supplementation during pregnancy mitigated PAE-related regional volume reductions, with larger volumes associated with improved 12-month recognition memory. These results provide the first evidence that choline may be neuroprotective against PAE-related brain structural deficits in humans.


Assuntos
Encéfalo/efeitos dos fármacos , Colina/uso terapêutico , Suplementos Nutricionais , Etanol/efeitos adversos , Fármacos Neuroprotetores/uso terapêutico , Adulto , Encéfalo/diagnóstico por imagem , Método Duplo-Cego , Feminino , Transtornos do Espectro Alcoólico Fetal , Humanos , Lactente , Recém-Nascido , Testes de Inteligência , Imageamento por Ressonância Magnética , Adesão à Medicação , Memória/efeitos dos fármacos , Gravidez , Estudos Prospectivos , Adulto Jovem
18.
Dev Neurobiol ; 80(11-12): 381-398, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33010114

RESUMO

Prenatal exposure to methamphetamine is associated with neurostructural changes, including alterations in white matter microstructure. This study investigated the effects of methamphetamine exposure on microstructure of global white matter networks in neonates. Pregnant women were interviewed beginning in mid-pregnancy regarding their methamphetamine use. Diffusion weighted imaging sets were acquired for 23 non-sedated neonates. White matter bundles associated with pairs of target regions within five networks (commissural fibers, left and right projection fibers, and left and right association fibers) were estimated using probabilistic tractography, and fractional anisotropy (FA) and diffusion measures determined within each connection. Multiple regression analyses showed that increasing methamphetamine exposure was significantly associated with reduced FA in all five networks, after control for potential confounders. Increased exposure was associated with lower axial diffusivity in the right association fiber network and with increased radial diffusivity in the right projection and left and right association fiber networks. Within the projection and association networks a subset of individual connections showed a negative correlation between FA and methamphetamine exposure. These findings are consistent with previous reports in older children and demonstrate that microstructural changes associated with methamphetamine exposure are already detectable in neonates.


Assuntos
Encéfalo/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/efeitos adversos , Metanfetamina/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/patologia , Substância Branca/efeitos dos fármacos , Anisotropia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/efeitos dos fármacos , Vias Neurais/patologia , Neuroimagem/métodos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
19.
Cereb Cortex ; 30(11): 5654-5666, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32537628

RESUMO

The human frontal cortex is unusually large compared with many other species. The expansion of the human frontal cortex is accompanied by both connectivity and transcriptional changes. Yet, the developmental origins generating variation in frontal cortex circuitry across species remain unresolved. Nineteen genes that encode filaments, synapse, and voltage-gated channels are especially enriched in the supragranular layers of the human cerebral cortex, which suggests enhanced corticocortical projections emerging from layer III. We identify species differences in connections with the use of diffusion MR tractography as well as gene expression in adulthood and in development to identify developmental mechanisms generating variation in frontal cortical circuitry. We demonstrate that increased expression of supragranular-enriched genes in frontal cortex layer III is concomitant with an expansion in corticocortical pathways projecting within the frontal cortex in humans relative to mice. We also demonstrate that the growth of the frontal cortex white matter and transcriptional profiles of supragranular-enriched genes are protracted in humans relative to mice. The expansion of projections emerging from the human frontal cortex arises by extending frontal cortical circuitry development. Integrating gene expression with neuroimaging level phenotypes is an effective strategy to assess deviations in developmental programs leading to species differences in connections.


Assuntos
Lobo Frontal/anatomia & histologia , Lobo Frontal/fisiologia , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Animais , Mapeamento Encefálico/métodos , Imagem de Tensor de Difusão/métodos , Humanos , Camundongos , Especificidade da Espécie , Transcriptoma
20.
Acta Neuropathol ; 139(5): 799-812, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32108259

RESUMO

Small subclinical hyperintense lesions are frequently encountered on brain diffusion-weighted imaging (DWI) scans of patients with cerebral amyloid angiopathy (CAA). Interpretation of these DWI+ lesions, however, has been limited by absence of histopathological examination. We aimed to determine whether DWI+ lesions represent acute microinfarcts on histopathology in brains with advanced CAA, using a combined in vivo MRI-ex vivo MRI-histopathology approach. We first investigated the histopathology of a punctate cortical DWI+ lesion observed on clinical in vivo MRI 7 days prior to death in a CAA case. Subsequently, we assessed the use of ex vivo DWI to identify similar punctate cortical lesions post-mortem. Intact formalin-fixed hemispheres of 12 consecutive cases with CAA and three non-CAA controls were subjected to high-resolution 3 T ex vivo DWI and T2 imaging. Small cortical lesions were classified as either DWI+/T2+ or DWI-/T2+. A representative subset of lesions from three CAA cases was selected for detailed histopathological examination. The DWI+ lesion observed on in vivo MRI could be matched to an area with evidence of recent ischemia on histopathology. Ex vivo MRI of the intact hemispheres revealed a total of 130 DWI+/T2+ lesions in 10/12 CAA cases, but none in controls (p = 0.022). DWI+/T2+ lesions examined histopathologically proved to be acute microinfarcts (classification accuracy 100%), characterized by presence of eosinophilic neurons on hematoxylin and eosin and absence of reactive astrocytes on glial fibrillary acidic protein-stained sections. In conclusion, we suggest that small DWI+ lesions in CAA represent acute microinfarcts. Furthermore, our findings support the use of ex vivo DWI as a method to detect acute microinfarcts post-mortem, which may benefit future histopathological investigations on the etiology of microinfarcts.


Assuntos
Encéfalo/patologia , Angiopatia Amiloide Cerebral/patologia , Hemorragia Cerebral/patologia , Imagem de Difusão por Ressonância Magnética , Idoso de 80 Anos ou mais , Autopsia/métodos , Angiopatia Amiloide Cerebral/diagnóstico , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...